Software Engineering Technology

Agile Software Development for an Agile Force

John S. Willison

U.S. Army CECOM Software Engineering Center

I remember in a meeting I attended, an Army general argning the need for the software community to fall in-line, saying that

“Software itself has never killed anyone.” Maybe, maybe not, but I have seen software kill many Army programs and careers.
As the Army transforms itself into a more agile force, the Army software community continues to struggle with the challenge
of effectively providing software to support that force. This article identifies some components of an effective approach o soft-
ware development and provides an example that is leading the way.

It is necessary to provide a characteriza-
tion of the current US. Army business
environment to set the context for the rec-
ommended components for good busi-
ness. Historically, the Army acquisition and
development processes have been driven
by the attempt to institutionalize success
and avoid failure. The Army management
and acquisition processes are based pri-
marily on hardware models that, in turn,
are based on the value-added discipline of
risk management.

With hardware, it is critical to mitigate
risk and get it right the first time, particu-
larly prior to entering any stage that
involves significant expense such as pro-
duction. The Army has evolved into using
a rigid approach where requirements are
defined and then used as the basis for
development, testing, and determining suc-
cess. Further, as development and hard-
ware sustainment are different activities,
the Army has defined different processes
and funding strategies for these distinct
activities.

With software, the processes and
investment strategies are different than
hardware; the risks are also different, and
yet we attempt to manage them the same
way. Software sustainment to a large degree
is simply doing more development; howev-
er, development and sustainment are often
managed by different organizations and
funded differently. The risks associated
with softwate are different as well; and yet,
we attempt to manage them the same as we
work through a sequential series of mile-
stones. The real risks with software are in
taking too long before giving the user
something that knowingly will evolve over
time, and in measuring success as meeting
predefined requirements as opposed to
getting the user something he or she wants
and likes.

There are other factors that influence
the way the Army acquires and develops
software. For the increasing percentage of
Army capabilities that are hosted on com-
mercial off-the-shelf (COTS) hardware

16 CrossTALK The Journal of Defense Software Engincering

platforms, competition to provide soft-
ware is expanding and the barrier to enter
the competition is low. Users have access
to a wide range of sources, and more
importantly, a wide range of sources have
access to users. Increasingly, initial and
incremental capabilities can be provided
to usets as software-only releases, and in
some cases simply can be downloaded
over the network.

Finally, there is this question: how
much alike or different should the Army
software community be from the commer-
cial softwate industry? Cleatly there are
some differences. Most notably, the Army
software community’s priority is capability
and readiness whereas the commercial
software industry’s priority is profit. Those
different priorities have historically been
used to rationalize the need for unique and
rigid approaches to software.

Components for Good Business
The Army develops, integrates, and
employs as wide a range of software-based
capabilities as any other organization.
While no single method for improving the
Army’s approach to software development
would suffice, there are some common
components for improvement.

Balance Between Plan-Driven and
Agile Development

The October 2002 edition of
CROSSTALK [1] did an excellent job of
contrasting the plan-driven [2, 3] and agile
development approaches to software, and
the spectrum between these two perceived
extremes. There is much to be gained
from both approaches.

The Software Engineering Institute’s
Capability Maturity Model®, for example,
has done much to address softwate as an
engineering discipline and the need for a
plan-driven approach. Agile development,
as characterized by the Agile Alliance [4],
finds:

. more value in individuals and

interactions over processes and
tools, working software over com-
prehensive documentation, cus-
tomer collaboration over contract
negotiation, and responding to
change over following a plan.

Historically, the Department of Defense
and the Army have emphasized process.
To produce a more agile force, the Army
needs a software community that has
process discipline, but is more agile as
well.

Get as Close to the User as Possible
The only one who truly knows what the
usetr wants or needs is the user himself.
The closer you get to the user, the closer
you will get to developing software that he
or she will accept and adopt; it is never too
early to do this.

Show Them, Ask Them, and

Repeat Often

The Army is very good at generating
requirements, and generating endless
cycles of life-cycle events aimed at meet-
ing those requirements. Instead of asking
users what they need and then getting back
to them only after developing the solution,
the Army should be prepared to show
users what they could get up-front. If
nothing else, this builds the users’ confi-
dence that the Army is able to deliver
something. The focus should be on eatly
and continuous software delivery.

Architecture, Architecture,
Architecture

Architect Frank Lloyd Wright is believed
to have said that no matter what you are
building, always remember:

It will take longer than you plan, it
will cost more than you figured,
and it will be messier than you
could have ever have anticipated.
But remember the most important
thing is not what is visible. What’s

April 2004

most important is the foundation.

Bad software products do not neces-
sarily have bad software architectures.
However, good software products are like-
ly to have good software architectures.
While the Army, and everyone else for that
matter, has increased the amount of atten-
tion and discussion surrounding software
architectures, the understanding and prac-
tices associated with software architectures
are still not sufficient.

Senior Army leaders echoed the need
for the Army’s development approach to
be more agile and responsive at a recent
Association of the United States Army
Symposium [6]. Lt. Gen. John Caldwell,
military deputy to the assistant secretary of
the Army (ASA) for Acquisition, Logistics,
and Technology (ALT) said, “If you wait
to put a perfect capability in the field, you
will never put anything in the field,” and,
“People are the key to our business.”

Col. Bruce Jette, director of the recent-
ly established Rapid Equipping Force, said
that the goal is to go from “idea to equip-
ping” in two to three months and that,
“field commanders are tremendously
accepting” of this approach.

Col. Nick Justice, director Future
Force ASA ALT said, “The best way to
find out how to engineer solutions is to get
out with the guy who uses them.” These
principles are captured in the components
for good business.

Maneuver Control System

Light Program

The feasibility and benefits of applying the
components for good business can best be
illustrated by way of example. The Army’s
Maneuver Control System (MCS) program
is part of the Army Battle Command
System and provides the commander with
the capability to plan and monitor the bat-
tle. The MCS program is managed by the
product manager (PdM) MCS, under the
program manager Ground Combat
Command and Control and Program
Executive Officer Command, Control,
Communications — Tactical. Development
is led by the Air Mobility Command
Communications-Electronics Command
(CECOM) Software Engineering Center
and supported by Shonborn-Becker
Systems Inc., L3 Ilex, Lockheed Martin,
CECOM Research Development and
Engineering Center, and others.

MCS Light was born out of opportu-
nity and necessity. The MCS Light product
implements command-and-control func-
tionality on a PC/Notebook/Windows
platform. The MCS Light product has

April 2004

Product Development I

Agile Software Development for an Agile Force

| Release - 3 Months I

Installation Configuartion

MISSIO!’\ Adapt and
Analysis Clarify

PdM, TSM, and
Developer
Decision

Release

Planning
-Req'ts Analysis
-Schedule and
Resource Review

Mission Goals
L WESENERER N

Mission Goals

Clarify

—

Architecture
-Requirements Review
-Arch. Development and
Assesment

Adapt and

Tech Eval
-Research
-Evaluation
-Prototyping

’_I

Architecture

W‘Managemsm Version of Code
— | Iteration - 4 Weeks I

Release
Objectives

-Code Structure
I -User Interface

it

Dev
User Stories ITsam Decision
Demo

Design

-Use Flow
Diagrams

l——

-White Board Diagrams
-Documents’
-User Interface

Adapt and Clarify

Construct
-Code
-Product Integration [
-Unit Test x
w
°
3
@
S
-Built Code g
-List of Changes S
System g
Integration ||
-Build
-System Test

Note: 'Documents are created for critical, high-risk, unclear, complicated tasks, and external interfaces.

Figure 1: The Defined Process

gained widespread acceptance within the
Army command-and-control user com-
munity. Representative of the success of
the product are comments made by Lt.
Gen. John Vines, previously the comman-
der of the 82nd Coalition Task Force
(CTF82) in Afghanistan and currently the
commander of the 18th Airborne Corps,
who wrote:

MCS Light is the best tool available
today recommend the Army
adopt CTF82’s employment of
MCS-Light as its strategy to rapidly
deploy a standard, interoperable,
digital command-and-control sys-
tem Army-wide. [7]

MCS Light has become the planning
tool of choice for nine out of 10 active
Army divisions. Much can be learned from
examining this success.

The MCS Light development process is
the result of several years of direct experi-
ence developing software in a very dynam-
ic environment. The process is well
defined and has been, in fact, in use for
several years. And the process has resulted
in a high-quality product that has been
widely accepted by the user community.
Figure 1 is a graphical representation of

the defined process.

One of several key aspects of the
process is the notion of iterations and
releases. The MCS Light project has adopt-
ed a four-week iteration and a three-month
release cycle. Within an iteration, a team
may cycle through the design, construct,
integrate, and demo steps several times.
This can be done within a team and also
across teams within the project. It is also
important to note the level at which the
definition of what is in a release and what
is in an iteration is managed. At the release
level, agreement is reached with the PdM.
Definition and modification at the itera-
tion level is managed at the project-leader
level. Again, this provides for the flexibili-
ty needed to effectively manage in a very
dynamic environment

Balance Between Plan-Driven and
Agile Development

The MCS Light software process has
struck a balance between agile develop-
ment and plan-driven development, or
planned agility in the following ways.

Individuals and Interactions Over
Processes and Tools
The MCS Light project and its broader

organization have consistently placed sig-

wwwi.stsc.hill.af.mil 17

Software Engineering Technology

nificant emphasis on individuals and have
backed up this emphasis with investment.
Roughly half of the development team
are government civilian employees, the
other half are contractors working on-site
as an integral part of the team. Software
developers represent more than 85 per-
cent of the project staff, and all civilian
engineers have either completed or are
pursuing advanced degrees in software
engineering,

Consistent with agile development
approaches, the overall development team
is comprised of smaller teams. These
teams typically consist of three to 10 indi-
viduals who are co-located within the
same office. Interaction is informal, con-
stant, and essential to the approach.

Working Software Over
Comprehensive Documentation

The MCS Light project has placed consid-
erable emphasis on the software product
and has considered extensive documenta-
tion as a significant distraction from devel-
oping the end product (more than 800,000
source lines of code). Therefore, it con-
cludes that developing such documenta-
tion represents an even greater risk than it
is intended to avert.

The atchitecture is extensively docu-
mented and that documentation is main-
tained. In addition, an “MCS Light For
Dummies Guide” has been developed as a
training guide for users. Additional train-
ing documentation has been and will be
developed to an even-greater degree as
fielding of the MCS Light product pro-
gresses. There is also documentation that
traces planned and delivered functionality
back to the system Operational Require-
ments Document.

The product itself, as opposed to
extensive documentation, has served as
the basis for interactions between the user
and the development team. Relatively
speaking, little documentation has been
developed on the MCS Light project, and
no one has missed what has not been
developed, including those paying the
bills.

Customer Collaboration Over
Contract Negotiation

A heavy emphasis has always been placed
on collaborating with the user. For the
MCS Light development team, there is
also another customer: the PdM MCS.
Interactions with the PdM are frequent
and less formal than the requirements-
based contracting approach so often
implemented within the Army. The over-
head associated with detailed contract
negotiation — and renegotiation every time

18 CrossTALK The Journal of Defense Software Engincering

a change is necessary — is overly burden-
some to any development effort looking
to rapidly respond to a customer’s needs.
The project has adopted the equivalent of
a level-of-effort agreement with the PdM.
Within this approach, it can measure
progress at the standard milestones and
measure earned value.

Responding to Change Over Following
a Plan

The Army as an institution is well versed
in the development of plans. Fortunately,
the Army also recognizes that no plan,
even the best plan, survives long in a
dynamic environment before needing to
be revised. Planning for software develop-
ment is not significantly different than
planning for a battle. The MCS Light
effort has consistently placed an emphasis
on responding to change. This emphasis
gives the team the flexibility to respond
effectively to the constant evolving and
changing user needs.

““The MCS Light effort
has consistently placed
an emphasis on
responding to change.”

Get as Close to the User as Possible
On the MCS Light project, the team has
been accused in the past of listening too
much to the user and the surrogate uset,
Training and Doctrine Command System
Manager (ISM), as opposed to strictly
adhering to requirements definitions and
programmatic structures. Doing so has
served the project well. As stated earlier,
as a developer the closer you are to the
user, the more likely you will develop
something useful. Simply put, that means
having software developers and end users
working side by side.

On MCS Light, the project leader, all
team leaders, and a significant number of
project engineers have spent a significant
amount of time in the field with users.
MCS Light software engineers have
worked side by side with users in garrison,
at war-fighting exercises, and have even
deployed with units to Afghanistan and
Iraq. Being that close is harder than not,
but it is the only way to develop a useful
product.

Show Them, Ask Them, and
Repeat Often
Key to the MCS Light success has been

establishing a Beta Site concept.
Leveraging industry practices, some oper-
ational units were identified as official
Beta Sites. As a Beta Site, the units were
provided with developmental releases of
software. The premise was simple: the
team would provide incremental releases
of software, the user would provide feed-
back, and the team would respond rapidly
where possible with another incremental
release.

Instead of having to wait years for a
new version of software that would likely
not satisfy their needs, users were rapidly
and frequently given developmental
releases of software that, incrementally,
met more and more of their needs.
Confidence and trust between the devel-
opers and the users were formed. With
trust comes the need for less bureaucracy,
thereby enabling the streamlining of the
approach even more. Since its inception,
every active Army division has come on-
line and requested to become an MCS
Light Beta Site.

The benefits of this approach cannot
be overstated. Through this approach, it
is worth noting that Army units have
demonstrated a willingness to accept
good enough software much sooner over
the promise of better quality software
much later. If they do not like the prod-
uct delivered, or the product delivered
does not work, the user has no problem
saying so.

The best case is that the team rapidly
responded to the user’s need and got valu-
able feedback as to what else was needed.
The worst case is that the team learned
what the user did not want or need, and
only lost the time invested since the previ-
ous release. In that respect, the Army is
no different than commercial industry —
time to market or time to field is a priori-
ty, and only an agile approach will do.

Architecture, Architecture,
Architecture

It would not have been enough to simply
be close to the user and provide early and
frequent development releases. The prod-
uct also needed to be sound and evolv-
able. From the onset of the project, archi-
tecture definition and evolution has been
a cornerstone of the development effort.
Software architecture was defined almost
from day one, and a well-defined architec-
ture has been kept up to date and have
served as the basis for all development
efforts.

Also key to the success of the project
has been a well-structured architecture. In
the case of MCS Light, a three-tier archi-
tecture was defined and adopted. This

April 2004

architecture has served the project well in
allowing developers to leverage COTS
products and tools across the different
tiers as well as in providing a powerful
approach to managing data. While every-
one talks about how important architec-
tures are, MCS Light as a project has actu-
ally implemented an architecture-based
approach to development, and the contin-
ued evolution of the product is the best
testimony to that case.

Summary

Insanity has been defined as doing the
same thing over and over again and
expecting different results. If the Army
software community is to truly, that is
truly, achieve gains in effectiveness and
efficiencies, it must be willing to abandon
those practices that have not served it
well. The Army must be willing to adopt
practices that strike a balance between dis-
cipline and agility.[]

References

1. US. Air Force Software Technology
Support Center. “Agile Software
Development.” CROSSTALK 15.10
(Oct. 2002) <www.stsc.hill.af.mil/
crosstalk/2002/10/index.html>.

2. Paulk, Mark. “Agile Methodologies
and Process Discipline.” CROSS-

Register today!

For registration, conference, and trade
show information visit our Web site or call

www.stc-online.org
800-538-2663

April 2004

TALK 15.10 (Oct. 2002): 15-18
<www.stsc.hill.af.mil/crosstalk/2002/
10/paulk.html>.

3. Boehm, Barry. “Get Ready for Agile

Methods, With Care.” IEEE
Computer Jan. 2002.
4. Agile Alliance. “Agile Software

Development Manifesto.” 13 Feb.
2001 <www.agilealliance.org>.
5. US. Army. “Transforming Current

Agile Software Development for an Agile Force

Operations.” Association of the
United States Army Acquisition
Symposium, Falls Church, Va., 8 Sept.
2003.

6. Vines, M.G. John. “Commander
CTF82, Memorandum Thru Com-
mander CTF180 and Commander U.S.
Central Command For US. Army
Deputy Chief of Staff for Plans and
Operations.” 15 Jan. 2003.

About the Author

John S. Willison is
director of Advanced
Battlespace Solutions
for the U.S. Army Com-
munications Electronics
Command (CECOM)
Software Engineering Center, Fort
Monmouth, N.J. CECOM is responsi-
ble for developing software architec-
tures and products for Communi-
cations, Command, Control, Com-
puter, Intelligence, Electronic Warfare
and Sensors systems. Willison is expe-
rienced in the application of software
technology, software architecture, pro-
totyping, and management. He has
received numerous awards, including

the Army’s Distinguished Service
Award, the Secretary of the Army
Award for Outstanding Achievement,
the Federal Technology Leadership
Award, and the Federal 100 Award.
Willison has a Bachelor of Science in
electrical engineering from Lafayette
College and a Master of Science in
software engineering from Monmouth
University.

CECOM Software

Engineering Center

ATTN: AMSEL-SE-AT

Fort Monmouth, NJ 07703
Phone: (732) 532-2342

E-mail: john.willison@us.army.mil

(Do), related iIndustrn

el

by increasng the

wwwi.stsc.hill.afmil 19

